The MapScore project described here provides a way to evaluate probability maps using actual historical searches. On a metric where random maps score 0 and perfect maps score 1, the ISRID Distance Ring model scored 0.78 (95%CI: 0.74-0.82, on 376 cases). The Combined model was slightly better at .81 (95%CI: 0.77-0.84).
Our MapScore paper is now in press at Transactions in GIS! From the abstract:
The MapScore project described here provides a way to evaluate probability maps using actual historical searches. In this work we generated probability maps based on the statistical Euclidean distance tables from ISRID data (Koester, 2008), and compared them to Doke’s (2012) watershed model. Watershed boundaries follow high terrain and may better reflect actual barriers to travel. We also created a third model using the joint distribution using Euclidean and watershed features. On a metric where random maps score 0 and perfect maps score 1, the ISRID Distance Ring model scored 0.78 (95%CI: 0.74-0.82, on 376 cases). The simple Watershed model by itself was clearly inferior at 0.61, but the Combined model was slightly better at .81 (95%CI: 0.77-0.84).
Continue reading "Forthcoming MapScore Paper!"