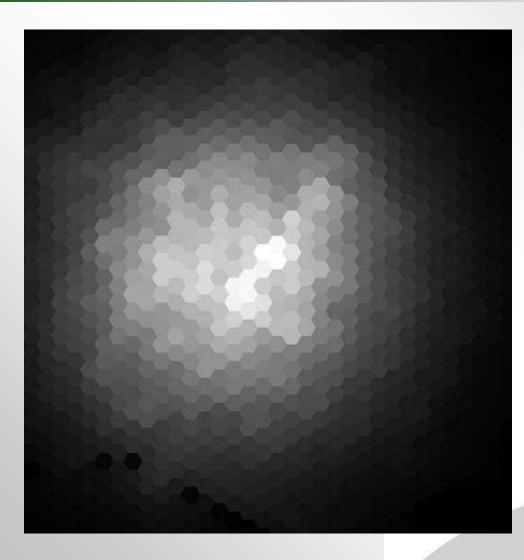

MapScore: Probability Map Evaluation for Search & Rescue

Eric Cawi, Nathan Jones, Dr. Charles Twardy

Funded by an NSF "Research Experience for Undergraduates" grant to colleagues at Brigham Young University. Many thanks to NSF and BYU

- Introduction / Context
- Website Walkthrough
- ESRI models using Koester's stats
- Tabletop Exercise

NSF REU with BYU



Many thanks to the WiSAR team at BYU and to the NSF!

- **BYU** had a different approach to making probability maps.
- How can we compare?
- BYU offered us REU funding on their WiSAR project for MapScore.
- We hired two great students
 - Nathan Jones (website)
 - Eric Cawi (GIS models)

BYU Motion Model

New York 53 (46yo male camper)

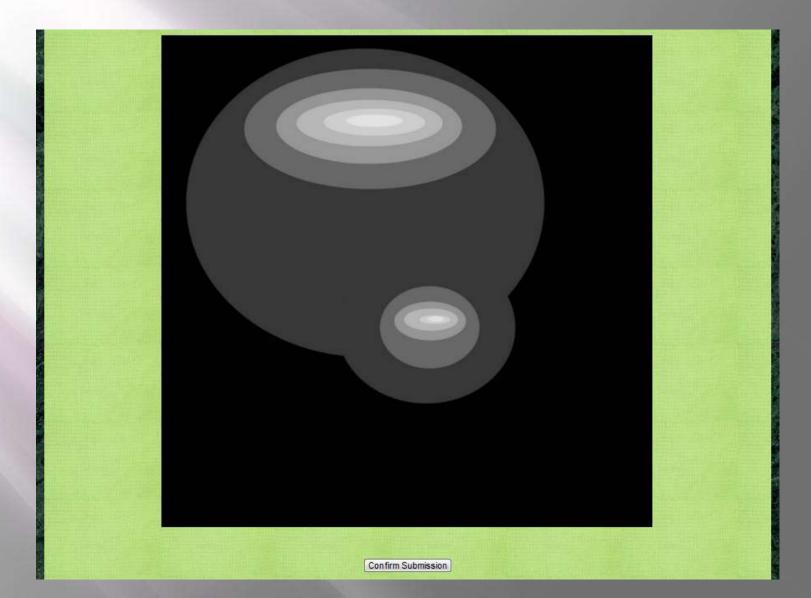
Probability Map by Lanny Lin Brigham Young University

Score: 0.98558 (98+%)

MapScore Functional Goals

- Provide researchers with an environment to test probability maps based on actual lost person scenarios.
- Establish competition among research groups to create the most accurate models.

- Introduction / Context
- Website Walkthrough
- ESRI models using Koester's stats
- Tabletop Exercise


Main Menu

ASON NIVERSITY	Lost Person Mo	son University: odel Rating System ^{in Menu*}	Maso	
Welcome to the lost person model rating system. This system is intended to provide academic and research affiliated organizations with an opportunity to compare their lost person models with other models being developed in the field. Top Rated Models				
	Top Rat	ted Models		
Institution Name	Top Rat	ted Models Average Rating	Tests Completed	
Institution Name Virginia Tech			Tests Completed	
	Model Name	Average Rating		
Virginia Tech	Model Name Hokie	Average Rating 0.99758	1	
Virginia Tech TestA	Model Name Hokie Alpha	Average Rating 0.99758 0.99758	1	

Accept New Test Case

Probability Map Upload

Probability Map Rating

George Mason University: Lost Person Model Rating System

[Log Out | Leaderboard] *Submission Review* [Issue Tracker | Help]

Congratulations! Your Model has been sucessfully rated on the Hiker01 test case.

Model Rating: 0.99758

Metric from -1 (Worst Possible) to 1 (Perfect) On average, a random submission produces a rating of 0

Decription of Metric

You will now be able to access your completed test case via the "Completed Test" section of the model menu

Rossmo Metric

P = prob(the find location)

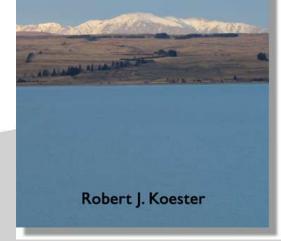
r = proportion of pixels > P

- Roughly.
- Add half the pixels with prob = *P*. (Koester)

Scaled to be more intuitive

- R = (.5 r)/(.5)
- Range = -1 (bad) to 1 (good)

- Introduction / Context
- Website Walkthrough
- ESRI models using Koester's stats
- Tabletop Exercise



Modified ESRI Models

- Distance from IPP
- Elevation Change from IPP
- Linear Features/Track offset
- Find Location

Base models created for Yosemite by Liz Sarow, ESRI. Based on statistics from Lost Person Behavior by Robert Koester. Generalized & modified for MapScore by Eric Cawi. Lost Person Behavior

A search and rescue guide on where to look - for land, air and water

Lost Person Behavior: Many Vars

Subject_Category					
Hiker	25.5				
Psychotic	1.26	•			
Child	8.63				
Youth	2.86	•			
Mental Retardation	1.82	E i			
Vehicle	4.30				
Dementia	7.16				
Despondent	6.50	-			
Hunter	16.4				
Autistic	0.41				
Worker	1.50	•			
Skier	2.66	•			
Substance Abuse	0.45				
Elderly	0.41				
Criminal	0.29				
Fisher	2.42				
Walkaway	1.51	•			
Climber	2.67				
Boater	1.62				
Snowmobile	4.32	-			
Mountain Biker	2.74	•			
Gatherer	1.73				
Hiker Tramper	2.88	•			

Trauma 5.73 Overdue 17.2 Evading 2.68 Lost 60.4	Ì
Evading 2.68	1
	÷
Despondent 5.75	ł
Medical 1.89	ł.
Criminal 0.32	ł.
Stranded 5.07	ł.
Avalanche 0.46 Drowning 0.55	ł
Drowning 0.55	1
Age	
< 4 1.86	
< 7 2.48	
< 10 2.40	
< 13 2.87	
< 16 5.15	
< 37 38.5	
< 62 30.5 < 76 8.88	
76 + 7.34	
39 ± 22	
00122	
Group_Type	
M 55.1	
MM 15.2 F 16.1	
MF 6.85	
FF 2.88	
AC 3.89	

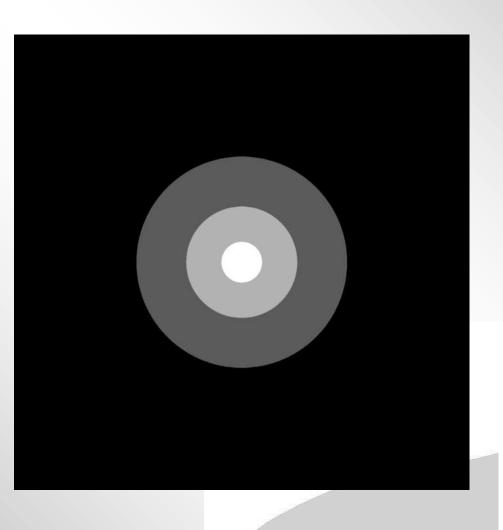
Populatio	n_Den	sity	
	57.7	-	
Rural	17.3	•	
Urban Water	12.8	18 E.	
Suburban	6.63		
Те	rrain		_
Mountainous	64.9		
Hilly	12.9	📕 i 🛛 i 👘	:
Flat	19.1	- 1 I I I	
Water	3.13		
Ecoregio	n_Dom	ain	
Temperate	60.7	•••	
Dry	39.1	• : :	
Tropical	0.21	: : :	

Ecore	gion_D	ivision
M240	14.8	
_310	2.63	
_M230	0.42	
410	0.21	
230	10.3	_
260	1.30	1 - E
250	0.97	
320	0.94	
_M210	7.11	
_M330	25.1	
210	5.42	
240	5.21	
_M310	2.71	
220	3.30	
_M260	4.31	-
330	0.47	
_M340	3.24	
340	3.95	

M220 7.54

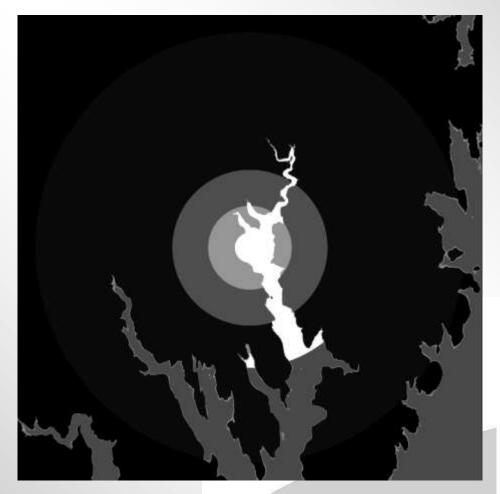
Distance_lppKm_	Dispersion_Angle
< 0.25 13.2	< 0.5 18.5
< 0.85 17.0	< 16 16.2
< 1.65 15.2 < 3.25 18.4	< 34 22.0 < 62 12.4
< 7.95 16.4	< 102 16.1
7.95 + 19.9	<= 180 14.8
3.71 ± 3.8	46.9 ± 49
	Track_OffsetM_
	< 10 15.9
	< 23 16.3
	< 95 13.8
	< 254 26.2
	< 1100 16.3
	343 ± 500
Elevation_ChangeFt_	Up_Down_Same
< -48 30.3	Down 46.4
< -46 18.6	Up 34.0
< 50 24.1	Same 19.6 💻
50 + 27.0	
2.98 ± 64	

Subject_Status				
Well	74.2			
Injured	13.9		11	
Doa	9.48		11	
No Trace	2.50			

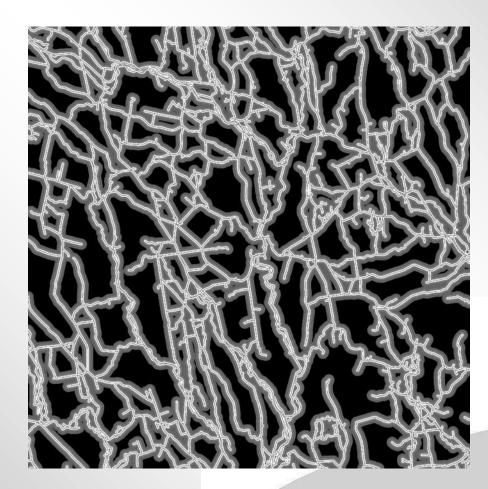

ISRID Data (2008)

Example Distance Map for Scoring

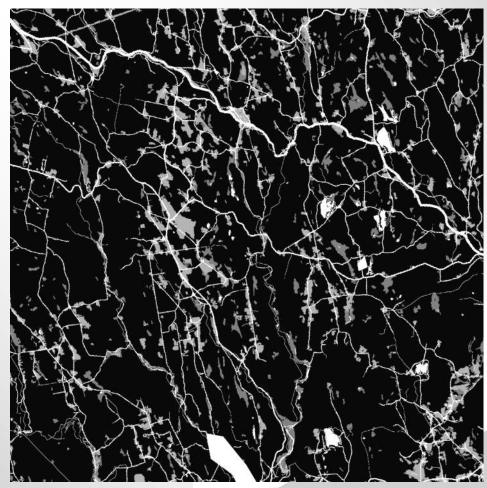
l've adjusted the brightness and contrast of all the greyscale maps so they look better on my monitor. ©


The actual values given to the computer are sometimes hard for the eye to distinguish.

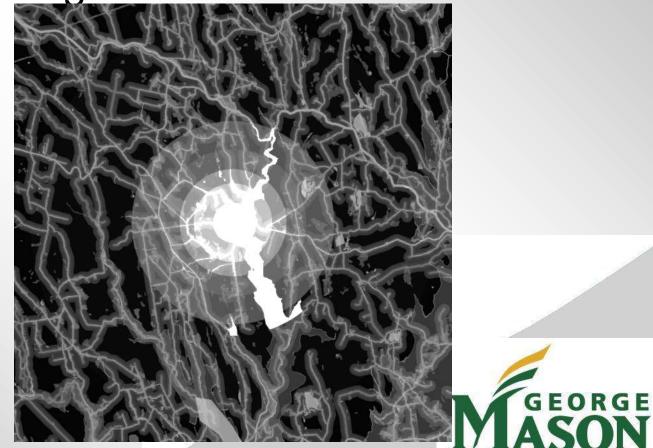
But the scoring metric cares only about relative value anyway.



Example Elevation Probability Map (Hiker Model)



Example Linear Features Probability Map


Example Land Classification Probability Map

Combined Probability

 Average of all the probability maps, equally weighted.

Average Scores

Model	Average Score	Tests Completed
DELL	0.54	26
Distance	0.52	26
Elevation	0.59	26
Linear		
Features	0.18	26
Land	0.00	
Classification	0.23	26

Case by Case Scores

Case	Distance	Elevation	Linear Features	Land Classification	DELL
Arizona95	0.99354	-0.49825	0.915229	-0.047413	0.942662
Arizona01	-0.19774	-0.16843	-0.03983	0.95349	0.79786
Arizona03	0.94675	0.88205	0.97485	-0.07843	0.98671
NewYork108	0.99364	0.98085	-0.07907	-0.15934	0.98287
Avg Hiker	0.68408	0.29906	0.44279	0.16708	0.92753
Arizona02	0.64351	-0.42168	-0.0288	0.2041	0.35105
Arizona24	0.99676	0.98127	-0.09049	-0.37102	0.81521
Avg Dem	0.82014	0.27980	-0.05965	-0.08346	0.58313
Avg	0.7652	0.4258	0.38149	0.12455	0.80788

So far

- On average, combining the models does better than any of **our** individual models
- Elevation is the most accurate of **our** individual models.

 The BYU Motion Models have so far scored an average of .744

Future Work

- Providing GIS Layers for test cases.
- Run more test cases.
- Automated baseline models.
- Scripting support.
- Allow subjective consensus

Citations

- [1] <u>http://www.nationalparkstraveler.com/2010/08/search-and-rescue-ops-cost-national-park-service-48-million-20086495</u>
- [2] <u>http://www.odt.co.nz/news/national/38500/search-and-rescue-operations-cost-400000?page=0%2C1</u>
- [3] http://faculty.cs.byu.edu/~mike/mikeg/papers/LinGoodrichIROS2009.pdf
- [4] Robert J. Koester 2008. Lost Person Behavior
- [5] Elizabeth Sarow 2011. Determining Probability of Area for Search and Rescue using Spatial Analysis in ArcGIS 10. ESRI slides.
- [6] Proportional Consensus spreadsheet. <u>http://www.sarblog.info/proportional-</u> <u>consensus-method/</u>.
- [7] Rossmo, D. K. (1999). Geographic Profiling (1st ed.). CRC Press.

SARBayes: http://sarbayes.org

MapScore: http://mapscore.sarbayes.org

BYU WiSAR: https://facwiki.cs.byu.edu/WiSAR/index.php/Main_F

Further Reading

Some cool BYU articles

- L. Lin and M. A. Goodrich. A Bayesian Approach to Modeling Lost Person Behaviors Based on Terrain Features in Wilderness Search and Rescue. To appear in *Computational and Mathematical Organization Theory.*
- M. A. Goodrich, B. S. Morse, C. Engh, J. L. Cooper, and J. A. Adams. Towards using Unmanned Aerial Vehicles (UAVs) in Wilderness Search and Rescue: Lessons from field trials. *Interaction Studies*, 10(3), pp455-481, 2009. Copy available on request.
- M. A. Goodrich, B. S. Morse, Damon Gerhardt, J. L. Cooper, M. Quigley, J. A. Adams, and C. Humphrey. Supporting Wilderness Search and Rescue using a Camera-Equipped Mini UAV. *Journal of Field Robotics*, 25 (1-2), pp89-110, 2008. <u>The paper is</u> <u>available</u> for free from Wiley InterScience.
- L. Lin and M. A. Goodrich. A Bayesian Approach to Modeling Lost Person Behaviors Based on Terrain Features in Wilderness Search and Rescue. *Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation.* Sundance, UT, USA. March 31-April 2, 2009. pp. 49-56.

